skip to main content


Search for: All records

Creators/Authors contains: "DelVecchia, Amanda G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    Accurately estimating stream discharge is crucial for many ecological, biogeochemical, and hydrologic analyses. As of September 2022, The National Ecological Observatory Network (NEON) provided up to 5 years of continuous discharge estimates at 28 streams across the United States. NEON created rating curves at each site in a Bayesian framework, parameterized using hydraulic controls and manual measurements of discharge. Here we evaluate the reliability of these discharge estimates with three approaches. We (1) compared predicted to observed discharge, (2) compared predicted to observed stage, and (3) calculated the proportion of discharge estimates extrapolated beyond field measurements. We considered 1,523 site-months of continuous streamflow predictions published by NEON. Of these, 39% met our highest quality criteria, 11% fell into an intermediate classification, and 50% of site-months were classified as unreliable. We provided diagnostic metrics and categorical evaluations of continuous discharge and stage estimates by month for each site, enabling users to rapidly query for suitable NEON data.

     
    more » « less
  3. Abstract Rivers that do not flow year-round are the predominant type of running waters on Earth. Despite a burgeoning literature on natural flow intermittence (NFI), knowledge about the hydrological causes and ecological effects of human-induced, anthropogenic flow intermittence (AFI) remains limited. NFI and AFI could generate contrasting hydrological and biological responses in rivers because of distinct underlying causes of drying and evolutionary adaptations of their biota. We first review the causes of AFI and show how different anthropogenic drivers alter the timing, frequency and duration of drying, compared with NFI. Second, we evaluate the possible differences in biodiversity responses, ecological functions, and ecosystem services between NFI and AFI. Last, we outline knowledge gaps and management needs related to AFI. Because of the distinct hydrologic characteristics and ecological impacts of AFI, ignoring the distinction between NFI and AFI could undermine management of intermittent rivers and ephemeral streams and exacerbate risks to the ecosystems and societies downstream. 
    more » « less
  4. null (Ed.)
    ABSTRACT Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l −1 , and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l −1 ( P >0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen ( P <0.0001; 2.9-times lower at 2 vs. 12 mg l −1 ). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38–91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains. 
    more » « less
  5. Abstract

    Streams and rivers are major sources of greenhouse gases (GHGs) to the atmosphere, as carbon and nitrogen are converted and outgassed during transport. Although our understanding of drivers of individual GHG fluxes has improved with numerous site‐specific studies and global‐scale compilations, our ability to parse out interrelated physical and biogeochemical drivers of gas concentrations is limited by a lack of consistently collected, temporally continuous samples of GHGs and their associated drivers. We present a first analysis of such a dataset collected by the National Ecological Observatory Network across 27 streams and rivers across ecoclimatic domains of the United States. Average concentrations of CO2ranged from 36.9 ± 0.88 to 404 ± 33 μmol L−1, CH4from 0.003 ± 0.0003 to 4.99 ± 0.72 μmol L−1, and N2O from 0.015 to 0.04 μmol L−1and spanned ranges of previous global compilations. Both CO2and CH4were strongly affected by physical drivers including mean air temperature and stream slope, as well as by dissolved oxygen and total nitrogen concentrations. N2O was exclusively correlated with total nitrogen concentrations. Results suggested that potential for gas exchange dominated patterns in gas concentrations at the site level, but contributions of in‐stream aerobic and anaerobic metabolism, and groundwater also likely varied across sites. The highest gas concentrations as well as highest variability occurred in low‐gradient, warmer, and nonperennial systems. These results are a first step in providing unprecedented, continuous estimates of GHG flux constrained by temporally variable physical and biogeochemical drivers of GHG production.

     
    more » « less
  6. null (Ed.)